Abstract Schroedinger-Type Differential Equations with Variable Domain
نویسندگان
چکیده
منابع مشابه
Numerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملMassera Type Theorems for Abstract Functional Differential Equations
The paper is concerned with conditions for the existence of almost periodic solutions of the following abstract functional differential equation u̇(t) = Au(t)+[Bu](t)+f(t), where A is a closed operator in a Banach space X, B is a general bounded linear operator in the function space of all X-valued bounded and uniformly continuous functions that satisfies a so-called autonomous condition. We dev...
متن کاملMassera Type Theorem for Abstract Functional Differential Equations
The paper is concerned with conditions for the existence of almost periodic solutions of the following abstract functional differential equation u̇(t) = Au(t)+[Bu](t)+f(t), where A is a closed operator in a Banach space X, B is a general bounded linear operator in the function space of all X-valued bounded and uniformly continuous functions that satisfies a so-called autonomous condition. The ob...
متن کاملAttractors for Differential Equations with Variable Delays
The theory of global attractors for autonomous systems as developed by Hale in [7] owes much to examples arising in the study of retarded functional differential equations [8] (for slightly different approaches see Babin and Vishik [1], Ladyzhenskaya [13], or Temam [16]). Although the classical theory can be extended in a relatively straightforward manner to deal with time-periodic equations, g...
متن کاملLinear fractional differential equations with variable coefficients
This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1997
ISSN: 0022-247X
DOI: 10.1006/jmaa.1997.5422